Blueshift Cross-chain Protocol

The Blueshift Team
hello@blueshift.fi

July 2023

Abstract

A solution is presented to the problem of exchanging native crypto
assets between several blockchains without creation of wrapped to-
kens or other intermediate assets. The solution maintains consistent
cross-chain token reserves using an application-specific blockchain that
implements portfolio logic and serves as a settlement layer for all cross-
chain operations. Cross-Chain Portfolios concept is defined. The ar-
chitecture of Blues Chain - a settlement blockchain built on top of the
Cosmos SDK is described. Basic cross-chain operations and consen-
sus algorithm used by Blues Chain validators are explained. A new
utility of the BLUES token is introduced as a a payment medium for
the services of network validators and a reserve coin of the insurance

fund.

1 Introduction

The Blueshift protocol since it has been launched proved to be an efficient
and secure new DeF1i instrument for both digital asset exchange and liquidity
management. The protocol now embraces several blockchains, each with it’s
own ecosystem. But, since the ecosystems are loosely connected, the synergy
between those deployments was limited. Nowadays it becomes clear that
the future of blockchains is in interoperability. With these prerequisites the
Blueshift team started research and development efforts in order to make the
protocol cross-chain.

It appeared that the concept of Blueshift portfolios has decent advan-
tages applicable for the cross-chain solution as well. Virtual pairs used for
swaps in Blueshift portfolios can be generalized to take tokens not from one
blockchain, but from different blockchains and even aggregate reserves from
several blockchains for one token. Although this sounds pretty straightfor-
ward, there is still a fundamental problem that needs to be solved - main-
taining token reserves consistency across several blockchains. Otherwise we
can come to situations when parallel transactions in different chains can use
one reserve double times or use obsolete exchange prices already modified by
other transactions.

In this paper we present our solution to the problem of consistent cross-
chain token reserves based on an application-specific blockchain that im-
plements Blueshift’s portfolio logic and serves as a settlement layer for all
cross-chain operations. This blockchain, called Blues Chain, is not intended
to store any assets - all the assets under control of the protocol stay on
blockchains of their origin. Instead, Blues Chain stores consistent cross-chain
states: token reserves, internal oracle prices, exponential moving averages,
etc. We call all these states altogether Cross-Chain Portfolios (CCP) - a new
concept introduced by Blueshift as a new cross-chain DeFi primitive.

In subsequent sections we define Cross-Chain Portfolios in detail, describe
the architecture of Blues Chain and the Blueshift cross-chain protocol, basic
cross-chain operations, consensus algorithm used by Blues Chain validators,
new utility of BLUES token - validator staking and delegation.

2 Existing Solutions

Numerous projects are working on the problem of cross-chain interoper-
ability. Bridges of the first generation, for example, WBTC [19] or Multichain
(formerly Anyswap) [10], were based on token wrapping approach. To bridge
an asset from one blockchain to another in this approach you need to send
input tokens to a bridge smart contract on a source chain, where they are
locked. On a destination chain a special wrapping smart contract under con-
trol of the bridge is used to mint a corresponding amount of wrapped tokens.
To make a reverse bridging you send and burn wrapped tokens on the desti-
nation chain to unlock a corresponding amount of initial tokens on the source

chain. The main problem is secure and reliable cross-chain communication of
proofs that the required tokens are properly locked /minted /burned /unlocked
on connected blockchains. To achieve this WBTC uses a community of au-
thorized partners (merchants and custodians) defined in a multi-signature
contract governed by a DAO. Multichain uses a group of validators that
apply Multi-Party Computation (MPC) signatures to approve cross-chain
messages. The main disadvantage of this approach is that wrapped tokens
only have value while the bridging protocol is healthy. Therefore, holders of
the bridged tokens are exposed to the risk of losing their assets all the time
while holding them.

This disadvantage did not allow bridges of the first generation to overcome
problems of liquidity fragmentation and dispersion across several ecosystems
due to their inherent technological and security risks. This is why several new
solutions have emerged that are based on general message passing protocols
and allow for native bridging or cross-chain swapping of assets without the
need for wrapped tokens.

There are numerous general purpose cross-chain communication protocols
and bridges built on top of them: Axelar [1], Router protocol [13], LayerZero
[21], Stargate [14], OrbLabs/Earlybird [4], Hyperlane [8], Polymer chain [12],
Gravity bridge [7], Fusion [5]. These protocols use their own validator net-
works to confirm and sign cross-chain messages with an additional consensus
layer being used among the validators. Many of the protocols are built on
top of Cosmos SDK [3] with the Tendermint/CometBFT consensus layer
(Axelar, Router protocol, Polymer Chain, Gravity bridge) and IBC protocol
[6] for cross-chain communication. Polymer Labs developed Polymer chain
that uses zkMint - a zero-proof extension of the Tendermint consensus layer
allowing for integration between Cosmos and EVM-based blockchains us-
ing Modular IBC as a cross-chain communication protocol. Fusion uses a
different approach based on MPC and can be considered as an extension of
Multichain solution. LayerZero, OrbLabs/Earlybird and Hyperlane represent
an approach based on lightweight consensus clients deployed on connected
blockchains and off-chain oracle/validator and relayer services. Stargate uses
LayerZero as a communication protocol and Delta algorithm [20] to obtain
instant finality of cross-chain bridging operations.

Common limitation of solutions built on top of general purpose cross-chain
communication protocols is that application-specific logic is implemented
on edge blockchains without the integration of the application layer on all
involved chains so that they are always dependent on local protocols facing
the users at the beginning and end of a transaction. This leads to lack of a
consistent cross-chain state and no instant finality. Delta protocol partially
solves this problem, but only for bridging of equally valued assets.

Symbiosis [17], THORChain [18] and Osmosis [11] are examples of pro-
tocols that use intermediate assets while performing cross-chain bridging or
swaps.

Symbiosis is built on top of Boba BNB as a service blockchain. The cross-
chain communication capabilities of Symbiosis are provided by Relayers net-
work - a peer-to-peer (P2P) network with MPC-based signatures to approve
cross-chain messages. Symbiosis uses intermediate assets (sTokens) - a type
of wrapped tokens on the Boba BNB chain that represent stablecoins locked
on Symbiosis smart contracts in connected blockchains (e.g. sUSDC may
represent USDC on Polygon, etc.) sTokens are stored in Octopools - special
liquidity pools with AMM that supports 1:1 valued assets. Symbiosis relies
on third-party DEX aggregators (linch, OpenOcean) to extend exchanging
options beyond stablecoins backed by sTokens.

THORChain and Osmosis are full layer 1 AMM (automated market maker)
implementations built on Cosmos SDK that allow for swapping different
types of assets (not just 1:1). THORChain requires that liquidity providers
create pools (pairs) with RUNE (their native token) and other assets (BTC,
ETH, BNB, etc.) Then for exchanging, for example, BTC to ETH two
swaps are required: BTC-RUNE, RUNE-ETH. The swap logic is imple-
mented within Cosmos-based THORChain while special light-weight clients
(Observers) monitor source blockchains for incoming liquidity flows and Sign-
ers send output transactions to destination blockchains. Osmosis has much
in common with THORChain. In Osmosis their native token OSMO can
also be used for pooled liquidity but this is not required. Osmosis allow for
providing intermediate liquidity not only in pairs, but also in Balancer-style
multi-token pools.

Intermediate assets help achieving consistency, but multihop routes are
always needed to swap tokens making price slippage higher and overall op-

eration less efficient.

Another group of solutions is represented by cross-chain liquidity aggre-
gators: Chainge [2], LI.LFI [9], Swing [16]. These solutions rely on existing
liquidity sources on different blockchains (decentralized exchanges and DEX
aggregators) and third-party cross-chain communication protocols to perform
cross-chain swaps. Also, cross-chain decentralized exchanges (cross-chain
DEXes) usually act as high-level solutions, usually built on top of low-level
cross-chain protocols: Osmosis DEX on top of Osmosis, THORSwap on top
of THORChain, etc.

Liquidity aggregators may give better results through aggregation of dif-
ferent liquidity sources, but they do not add fundamental improvements to
the problem of cross-chain interoperability because they rely on third-party
cross-chain communication protocols.

As a result, we can conclude that using interconnected blockchains with
additional consensus layer providing secure and robust cross-chain commu-
nication is the best practical approach to the problem known so far. But
existing solutions do not ultimately fit all of the following criteria:

e Capital efficiency can be limited by liquidity fragmentation and disper-
sion as well as by the use of intermediate assets.

e Consistency can be low because the application-specific logic is often
implemented on edge blockchains without integration into the commu-
nication protocol.

e Speed can be decreased by the lack of efficient consensus protocols and
multihop routes.

e Decentralization can be limited by involving centralized third parties
in the process of transaction validation.

e User experience is not always friendly enough compared to standard
local swaps of assets.

Though existing solutions can solve these problems taken one by one, there is
still demand of a consistent all-in-one solution matching all of the mentioned

criteria. And this gave motivation to launch of the Blueshift Cross-chain
Protocol - an efficient portfolio-based interoperable AMM with a consistent
cross-chain state without intermediate assets.

3 Starting Point: Blueshift Protocol

The Blueshift protocol [15] is the core of the represented cross-chain solution.
The Blueshift protocol is a new AMM model that gives significantly better
capital usage efficiency than other AMM protocols. Instead of token pairs,
the Blueshift protocol has liquidity portfolios consisting of arbitrary numbers
of tokens. In addition to being more capital efficient Blueshift portfolios have
other advantages:

1. Internal price oracles: flexibility of token reserves. Unlike most
other AMM protocols, Blueshift does not use token amounts to repre-
sent prices. Instead, a price for every token relative to a base token
of a portfolio is stored in a special smart contract called Internal Price
Oracle. This gives the protocol flexibility of managing token amounts.
Every token has a corresponding target portfolio weight that can be
changed by a portfolio manager without changing the token price. The
protocol is able to pull real token shares up to their target weights in
a decentralised way. Besides token prices internal price oracles also
calculate and store exponential moving averages (EMA) of the prices.
EMA values are used to enhance protocol security (see details below).

2. Virtual pairs: low impermanent loss, better security and flex-
ibility of AMM. Primary target of the Blueshift protocol is allowing
token swaps. Users can swap any token pair in a portfolio with the help
of the Blueshift Automatic Market Maker (AMM) algorithm. Major
difference of the Blueshift AMM is that the algorithm does not perform
swaps directly into portfolios. Instead, the algorithm takes liquidity out
of a portfolio, forms a virtual pair on-the-fly, performs a swap in this
virtual pair and then returns liquidity back to the portfolio and up-
dates the internal price oracle - all in one transaction. Virtual pairs
give advantages of lower impermanent loss and better security. When
a market price of some token changes, it can be adjusted by arbitrage
operations. Because virtual pairs isolate token liquidity within a port-
folio, the changing price of one token does not affect prices of other

6

4

tokens, causing less impermanent loss. What is even more important
is that the AMM algorithm can take less liquidity for arbitrage opera-
tions in return to zero trading fees. Lower liquidity means higher price
slippage for arbitrageurs. Thus, if the AMM performs arbitrage swaps
with 10% of available liquidity, the resulting impermanent loss can be
up to 10 times lower. Another advantage of virtual pairs is flexibility to
use different AMM algorithms for different token pairs in one portfolio.
For example, a different price curve can be applied for stablecoin swaps
than for other token types.

. Protection against flash loan attacks and market fluctuations.

Using EMA values of token prices and virtual pairs makes it impossible
to attack the Blueshift protocol with flash loans. In every place where
price manipulations can damage the protocol security, EMA values are
taken into account. EMA values in internal price oracles change only
in subsequent blocks after the block that caused price modification. It
means that a forged price value may not be used in the same transac-
tion, therefore a flash loan attack will not succeed. For example, when
making token deposits into portfolios, if a token price EMA is lower
than a spot price, then EMA value will be used, disallowing overpriced
deposits. And virtual pairs give additional level of protection. If the
AMM detects that a spot token price differs from its EMA, it decreases
available amounts of liquidity for virtual pairs with this token. It means
that if a token price suffered manipulations, the token will have higher
price slippage. Therefore, buying a token and then selling it back to the
AMM will not generate zero outcome for an attacker but will cause loss
- it will be simply impossible to return a flash loan. Moreover, when
a token market price changes too fast, even without flash loan attacks,
the same protection mechanism will prevent liquidity leakage from a
portfolio - protecting liquidity providers from excessive impermanent
loss.

Principles of Cross-chain Portfolios

As described above, Blueshift portfolios are novel DeFi technology bricks that
can be considered as both financial instruments similar to ETFs and DEX
liquidity reserves with high capital efficiency and low impermanent loss. In

this whitepaper we introduce another powerful concept based on the previous
results - Cross-chain Portfolios.

Cross-chain portfolios (CCPs) contain several (more than two) tokens sim-
ilar to their local versions, but allow liquidity provisioning from all con-
nected blockchains. Each token may or may not be present on each con-
nected blockchain. There may be tokens that are present on only one of the
blockchains and there may be tokens that are present on several blockchains.
Thus, CCPs are not single smart contracts that hold all provided tokens.
Instead, they are logical views of aggregated liquidity from all the connected
blockchains. Therefore, liquidity aggregation and cross-chain swaps are the
most oustanding features of CCPs.

1. Liquidity aggregation. There are multichain tokens that can be
found natively on different blockchains. There are also wrapped tokens
that are produced by traditional cross-chain bridges when they move
liquidity from one blockchain to another. When those tokens are used
in traditional DEX liquidity pools, their liquidity is scattered across
different blockchains. Blueshift CCPs allow providing liquidity of the
same token on different blockchains and then using it in an aggregated
form as if the token liquidity was not scattered. This is achieved by the
virtual pairs feature of the Blueshift protocol. Cross-chain AMM is able
to account for all available liquidity on all blockchains when creating
a virtual pair for a swap. This means yet higher capital efficiency and
lower price slippage.

2. Cross-chain swaps. Possiblity of cross-chain swaps between native
tokens on different blockchains is a unique feature of Blueshift CCPs.
Unlike existing solutions, a Blueshift CCP does not require any wrap-
ping or intermediate tokens. Cross-chain swaps are performed in ex-
actly the same way as in local portfolios - by creating a virtual pair
on-the-fly and then applying an AMM algorithm for swap calculations
and price updates.

3. Token bridging. As a special case of a cross-chain swap, Blueshift
CCPs allow swaps of a token to the same nominal token on a different
blockchain. In this case there are no price impact and price updates
associated with the operation and this swap may be considered as a kind
of bridging. An advantage over traditional bridges is that the protocol
does not use wrapping of tokens - on both sides of the operation tokens

8

are in their native form. This solution is way more secure as the native
token value does not depend on the protocol after the operation has
been confirmed. Of course, this requires token liquidity to be provided
in both participating blockchains.

The implementation of these principles of CCPs require maintaining of a con-
sistent view of token amounts and prices over all the connected blockchains.
This is the main purpose of the Blueshift Cross-chain Protocol and Blues
Chain that are described in details in the next sections.

5 Protocol Architecture

- - |

: Source Chain Blues Chain |

| |

| |

| Blues Chain Blues Chain |

end ix BlueshiftRouter LightWeightPortfolio 7| Validator Node 1 Validator Node 2 |
| Smart Contract Smart Contract |

User

I ‘

| : r— P! |

! f) Blues Ch ‘

; ‘ i ues Chain
BlueshiftPortfolio BluesChainClient

| e~ ~ i |

| Smart Contract Smart Contract — L Validator Node 3 |

I - I

| |

BlueshiftRouter
Smart Contract

BluesChainClient
Smart Contract

v

BlueshiftPortfolio
Smart Contract

LightweightPortfolio
Smart Contract

I
I
I
I
I
|
! v
I
I
I
I
I
I

Figure 1: Blueshift Cross-chain Architecture

Blues Chain is the core of Blueshift’s cross-chain protocol architecture.
At the high level Blues Chain consists of several validator nodes that com-
municate with each other using the Cosmos CometBFT consensus protocol.
Besides this every node is connected to source and destination blockchains

9

and continuously poll for events on the BluesChainClient smart contracts
deployed in each connected blockchain.

BluesChainClient is the main smart contract supporting cross-chain op-
erations on connected blockchains. Its purpose is to emit special events on
cross-chain operations initiation and finalization. Another function of the
BluesChainClient smart contract is to serve as an endpoint for transactions
from Blues Chain validators.

The LightWeightPortfolio smart contract actually holds token reserves of
an associated CCP on the local blockchain. It does not contain any so-
phisticated protocol logic. There are two functions implemented by the
Light WeightPortfolio smart contract:

1. Receiving incoming tokens from users and initiating cross-chain events
(actual emission of the events is performed by the BluesChainClient
smart contract).

2. Sending outgoing tokens to users in response to commands passed by
the BluesChainClient smart contract from Blues Chain.

Cross-chain operations can contain several hops including local swaps in
standard BlueshiftPortfolio smart contracts. To achieve this the BlueshiftRouter
smart contract supports mixed local /cross-chain paths. BlueshiftRouter can
also be activated by the BluesChainClient smart contract when implementing
several local hops as a tail of a cross-chain swap.

6 Core Cross-chain Operations

6.1 Cross-chain Fees

Blueshift cross-chain operations require additional fees paid by protocol users.
Cross-chain fees are applied in addition to the existing fees in the Blueshift
protocol (liquidity provider fee and protocol fee). There are two types of
cross-chain fees:

1. Validator fee. This fee is taken as a percentage of token input
amounts for cross-chain operations. The initial validator fee rate is

10

0.1%, this value can be changed by governance. Validator fee is de-
ducted from input amounts before processing a cross-chain operation
and then is internally swapped for BLUES. To make this possible each
CCP must contain BLUES tokens. After being converted to BLUES
tokens, half of the validator fee is accrued to a special account that is
used to pay cross-chain validator rewards. The rest part of the validator
fee is sent to the Insurance fund (see below).

2. Gas fee. This fee is a fixed amount that is deducted from input
amounts before processing a cross-chain operation and then is inter-
nally swapped for BLUES. After being converted to BLUES tokens,
gas fee is accrued to a validator that has performed a transaction in a
destination blockchain as a part of a cross-chain operation to compen-
sate for the gas amount paid by the validator. The required amount of
BLUES tokens depends on gas price level in the destination blockchain.
The amount of input tokens is calculated based on internal gas token
and BLUES prices in the Blueshift protocol.

6.2 Cross-chain Swap
6.2.1 Route Calculation

Blueshift allows for swap routes that can contain more than one atomic swap
operation (hop). Routes can include both local and cross-chain swaps in a
sequence. The following route types exist:

1. Local swaps

2. Cross-chain swaps

3. Local swaps in a source chain - Cross-chain swaps

4. Cross-chain swaps - Local swaps in a destination chain

5. Local swaps in a source chain - Cross-chain swaps - Local swaps in a
destination chain

Using these types of routes it is possible to swap any pair of tokens across
different blockchains within Blueshift and it is not necessary to place all

11

tokens in CCPs - some tokens may exist in local portfolios. This feature
gives the Blueshift cross-chain protocol superior flexibility.

While in the first version of the Blueshift protocol there existed the Router
smart contract, but route calculations were performed outside the protocol
in the DApp front-end. In the cross-chain version of the Blueshift protocol
route calculation is implemented in the back-end - as a routing module inside
Blues Chain nodes. The routing module applies Dijkstra algorithm to search
for optimal paths that give users best possible exchange rates.

6.2.2 Elementary Swaps

During a cross-chain swap several elementary swap suboperations can occur.
These elementary swaps are performed using the constant product market
maker equations.

Let A be an input token amount, B - an output token amount, r; and ry -
virtual token reserves according to the Blueshift protocol whitepaper [15].
Direct elemenatary swap formula:

riro
T1+A

B:TQ—

Inverse elementary swap formula (rs must be greater than B):

e "
= — T

TQ—B

When performing a direct elementary cross-chain swap there can be a special
case when the local reserve of the output token in a destination blockchain
R;5 is less than the virtual reserve ro. In this case we first calculate A, -
upper limit of the input token amount that will consume all the local reserve:

B'Tl

Ag= ———
0 ro — Rpo

If A < Ag, then we use the standard direct elementary swap formula, else we
replace the virtual reserve with the local one:

1R

B =Ry —
L2 T1—|—A

An inverse elementary cross-chain swap is only possible when Ry, > B and
we use the standard inverse elementary swap formula.

12

6.2.3 Cross-chain Swap Procedure

Let

amount_in be an input token amount for a cross-chain swap;
amount_out be an output token amount of a cross-chain swap;

LP fee be a liquidity provider fee (including the protocol fee), initially
LP _fee = 0.3% = 0.003;

validator_fee be a validator cross-chain fee amount, initially valida-
tor_fee = 0.1% = 0.001;

gas_fee be a gas compensation fee amount, gas_fee = max(from_chain_gas_fee,
to_chain_gas_fee), where from chain_gas fee and to_chain_gas fee are
current gas fee amounts for source and target blockchains respectively.

Then the procedure of a cross-chain swap goes as following;:

1. Perform a direct elementary swap to buy BLUES tokens for the valida-

tor fee (sell A = validator_fee[token_in_currency| of input tokens and
buy B = validator_fee[BLUES] of BLUES).

Perform an inverse elementary swap to buy BLUES tokens for the gas
fee (buy B = gas_fee[BLUES]| of BLUES for A = gas_fee[token_in_currency]
of input tokens).

Perform a direct elementary cross-chain swap (sell A = amount_in *

(1 - LP_fee - validator_fee) - gas_fee[token_in_currency| of input tokens
and buy B = amount_out of output tokens.

6.3 Cross-chain Bridging

Blueshift CCPs can contain same tokens on different blockchains. In this
case users can initiate a procedure similar to cross-chain swaps, but having
the same token as both input and output. This special cross-chain swap is
equivalent to a bridging operation and is performed using a slightly different
algorithm.

Let

13

e amount_in be an input token amount for a bridging swap;
e amount_out be an output token amount of a bridging swap;

e validator_fee be a validator cross-chain fee amount, initially valida-
tor_fee = 0.1% = 0.001;

e gas_fee be a gas compensation fee amount, gas_fee = max(from_chain_gas_fee,
to_chain_gas_fee), where from_chain_gas fee and to_chain_gas fee are
current gas fee amounts for source and target blockchains respectively.

Then the procedure of a bridging swap goes as following:

1. Perform a direct elementary swap to buy BLUES tokens for the valida-
tor fee (sell A = validator_fee[token_in_currency| of input tokens and

buy B = validator_fee[BLUES] of BLUES).

2. Perform an inverse elementary swap to buy BLUES tokens for the gas
fee (buy B = gas_fee[BLUES]| of BLUES for A = gas_fee[token_in_currency]
of input tokens).

3. At the output we return the same amount of tokens without price
impact, but withholding cross-chain fees (amount_out = amount_in *
(1 - validator_fee) - gas_fee[token_in_currency|, amount_out must be less
than the local token reserve in the destination chain).

6.4 Cross-chain Liquidity Deposit

Providing liquidity to a Blueshift CCP is a cross-chain operation called lig-
uidity deposit. A user can provide several tokens in any connected (source)
blockchain. As a result, liquidity portfolio (LP) tokens are minted. The user
can choose on which of the connected (destination) blockchains to receive
the LP token amount.

Let

e amount_in_i be an input amount of i-th deposited token;
e LP_out be an output amount of LP tokens;

e LP_fee_and_impact be an amount of fees and price impact when the
deposit operation causes portfolio imbalancing;

14

e validator_fee be a validator cross-chain fee amount, initially valida-
tor_fee = 0.1% = 0.001;

e gas_fee be a gas compensation fee amount, gas_fee = max(from_chain_gas fee,
to_chain_gas_fee), where from chain_gas fee and to_chain_gas fee are
current gas fee amounts for source and target blockchains respectively.

Then the procedure of a liquidity deposit goes as following:

1. Perform the liquidity deposit and mint the output amount of LP tokens
(LP_out) according to the Blueshift Protocol whitepaper. If the deposit
operation causes imbalalancing of the portfolio, LP _fee_and_impact will
be applied.

2. Estimate an LP token amount required to withdraw BLUES tokens for
the gas fee (gas_fee[BLUES]), get gas_fee[LP_token|. Then withdraw
BLUES tokens from the portfolio.

3. Withdraw BLUES tokens for the validator_fee providing LP_out * val-
idator_fee amount of LP tokens.

4. Send the rest of LP tokens to the user. If LP_out < gas_fee[LP_token]/(1—
validator_fee), then the whole operation fails.

6.5 Cross-chain Liquidity Withdrawal

Withdrawing liquidity from a Blueshift CCP is a cross-chain operation called
liquidity withdrawal. A user can provide LP tokens in any connected (source)
blockchain. The user can choose on which of the connected (destination)
blockchains to receive the withdrawn token amounts.

Let

e LP_in_i be an input amount of LP tokens to withdraw i-th of the
portfolio tokens;

e LP_fee_and_impact be an amount of fees and price impact when the
withdrawal operation causes portfolio imbalancing;

e validator_fee be a validator cross-chain fee amount, initially valida-
tor_fee = 0.1% = 0.001;

15

e gas_fee be a gas compensation fee amount, gas_fee = max(from_chain_gas fee,
to_chain_gas_fee), where from_chain_gas fee and to_chain_gas_fee are
current gas fee amounts for source and target blockchains respectively.

Then the procedure of a liquidity withdrawal goes as following:

1. Estimate an LP token amount required to withdraw BLUES tokens for
the gas fee (gas_fee[BLUES]), get gas_fee[LP _token|. Then withdraw
BLUES tokens from the portfolio.

2. Withdraw BLUES tokens for the validator_fee providing >, LP_in; -
validator_fee amount of LP tokens.

3. Perform the liquidity withdrawal according to the Blueshift Protocol
whitepaper. The amount of LP tokens for each token withdrawal is

LP,mz

LP_in; - (1 —validator_fee) — gas_fee| LP _token] - S LP.in.
i -2y

If the deposit operation causes imbalalancing of the portfolio, LP_fee_and_impact
will be applied.

4. Send the withdrawn tokens to the user. If -, LP_in; < gas_fee[LP token]/(1—
validator_fee), then the whole operation fails.

7 Blues Chain: A Cross-chain Settlement Net-
work

7.1 Blues Chain Overview

Blues Chain is an application specific blockchain built on top of Cosmos SDK.
The main goal of Blues Chain is holding consistent and reliable data about
cross-chain token reserves and prices that constitute Blueshift CCPs. This
consistency allows for direct cross-chain operations (swaps, liquidity deposits,
etc.) without using intermediate assets or wrapped tokens.

Assets are not bridged to Blues Chain. Blues Chain is only responsible for
accounting, cross-chain messaging and consensus. Thus, Blues Chain is a
layer zero solution for the Blueshift cross-chain protocol.

16

Another important aspect of Blues Chain is that, being an application specific
blockchain, it contains a builtin implementation of the core Blueshift proto-
col logic, including the AMM), internal price oracles and virtual pairs. The
implementation in Go language is significantly more efficient than smart con-
tracts executed on a virtual machine (e.g. EVM), giving better performance
and scalability. This approach also helps Blueshift’s expansion to different
blockchain platforms in the future, because only simple lightweight portfolio
smart contracts are required on target platforms. This can be also beneficial
when integrating blockchains with high transaction costs as most part of the
logic is implemented on Blues Chain and does not require spending lots of
gas on transactions.

7.2 'Transaction Lifecycle

The Blues Chain transaction lifecycle is implemented on top of CometBFT
consensus algorithm which is a standard part of the Cosmos SDK.

Each cross-chain operation passes the following steps:

1. Cross-chain operation initiation. A users sends tokens to a lightweight
portfolio smart contract on a source blockchain. Then the BluesChain-
Client smart contract emits the OnSend event.

2. Source events detection. All validator nodes listen for lightweight
portfolio events in source blockchains. When a validator node detects
a new event, it builds a new transaction proposal, signs it with the
validator’s key and adds it to the mempool.

3. Block creation. A designated validator node for a next Blues Chain
block queries the mempool for new proposals. If it finds a proposal that
has got confirmations with more than 2/3 of validators’ total voting
power, it selects the proposal for addition to the next block. After
processing the whole mempool, the designated validator node creates
and broadcasts a new block proposal.

4. Consensus. All Blues Chain validators perform the standard CometBFT
consensus algorithm to confirm the new block. During the consensus
procedure each transaction gets one of two possible statuses: Confirmed

or Rollback.

17

I
send tokens

source

chain
contracts

init cross-chain tx event

VALIDATOR VALIDATOR

D mm— —

A A

Mempool
destination source
®<\ chain chain
RS contracts contracts
contract rejects*
duplicate submission™7 z x
i 4 N 1 A4
Designated validator takes only proposals r"
submitted by a set of validators that @@ the first who detected
totally have more than 2/3 of voting power a finalised transaction

new block proposal CometBFT

consensus

Figure 2: Blues Chain Transaction Lifecycle

5. Transaction finalization. When any validator node detects consen-
sus achievement for a new transaction with the Confirmed status, it
sends a finalization transaction to the BluesChainClient smart con-

18

tract in the destination blockchain. Then the BluesChainClient smart
contract emits the OnReceive event.

6. Transaction rollback. When any validator node detects consensus
achievement for a new transaction with the Rollback status, it sends
a rollback transaction to the BluesChainClient smart contract in the
source blockchain. Then the BluesChainClient smart contract emits
the OnRollback event.

7. Gas compensation. All validators listen for lightweight portfolio
events in destination blockchains. When a validator node detects a
new OnReceive/OnRollback event, it builds a new transaction proposal
for the gas compensation, signs it with the validator’s key and adds it
to the mempool. When this transaction gets confirmations with more
than 2/3 of validators’ total voting power, it gets selected for addition
to the next block and passes the standard consensus algorithm. This
way the validator who has finalized or rolled back the transaction gets
the gas compensation fee (in BLUES).

7.3 Validator Staking and Delegation

Blues Chain relies on staking and validation logic of Cosmos SDK. To become
a validator, one must stake BLUES tokens. The staking mechanism is based
on the existing Blueshift staking smart contracts (yield pools). After staking
in the yield pools, users will be able to delegate their stakes to existing
validators or to themselves.

Validators and delegators receive rewards - part of the validator fee pro-
portional to their staked BLUES amount (voting power). Validators can
set additional fee that they take from their delegators’ rewards in addition
to their own rewards. The rewards in BLUES are accrued to validators /
delegators accounts on Blues Chain and can be claimed in the yield pools.

Delegators can cancel or change their delegations. The cancellations do
not take immediate effect, but are subject to unbinding period.

19

7.4 Insurance Fund

Cross-chain operations carry additional risks compared to standard blockchain
transactions because states of different blockchains are not guaranteed to be
consistent. To overcome this fundamental problem Blueshift introduces a
special insurance fund. The fund is filled by withholding 50% of the valida-
tor fee that is paid in BLUES tokens by users when performing cross-chain
operations. The fund is controlled by Blues Chain and can only be used for
reimbursements in case of occasional losses. If no incidents of loss occur then
tokens will be locked in the insurance fund forever.

8 Source and Destination Blockchain Con-
nectors

8.1 Overview

Connectors to source and destination blockchains are essential parts of the
Blueshift Cross-chain Protocol. Each validator node must be connected to
all supported blockchains in order to initiate and confirm cross-chain op-
erations. These connections are implemented as standalone applications -
Validator Client Modules. There could be different types of the validator
client modules: EVM-compatible modules, Cardano modules and so on, the
number of module types will grow as Blues Chain adds support to different
blockchain types.

8.2 Validator Client Modules

The validator client modules implement two major functions:

e Listen to special events in source and target blockchains and transmit
events data to the Blues Chain node.

e Send finalization or rollback transactions to destination and source
blockchains on behalf of validators.

8.3 Blues Chain Client Events

The events that are detected by the validator client modules are generated
by the Blues Chain client smart contracts. There are three general types of

20

the Blues Chain client events:

e OnSend event is emitted when a cross-chain operation is initiated in
a source blockchain.

e OnReceive event is emitted when a cross-chain operation is com-
pleted in a destination blockchain.

e OnRollback event is emitted when a cross-chain operation is rolled
back in a source blockchain.

All the events carry data packets. The data packets have general fields as
well as arbitrary data depending on a cross-chain operation type. The general
data packet fields are:

e dataType is a cross-chain operation type (SWAP, DEPOSIT or WITH-
DRAW).

e sourceChain is a source blockchain id.
e destinationChain is a destination blockchain id.

e serialNumber is a number of the event (each cross-chain operation
type has it’s own sequence of event numbers).

e portfoliold is a cross-chain portfolio (CCP) id.
e sender is an account (wallet) address of sender in the source blockchain.

e receiver is an account (wallet) address of receiver in the destination
blockchain.

8.4 Signatures

The Blues Chain client smart contracts require that each cross-chain opera-
tion is properly signed by Blues Chain validators. To achieve this goal the
smart contracts store a hash value of the current set of validators’ account
addresses in the current blockchain - a valset. The initial valset is defined
at the smart contract deployment and later on it can be changed only by a
special transaction signed by the current (old) valset.

21

As a part of transaction lifecycle Blues Chain nodes gather validator sig-
natures compatible with the destination blockchain in every transaction.
When a validator client module executes the transaction in the destination
blockchain it must supply the current valset and all the collected signatures
to the Blues Chain client smart contract.

Upon receiving a transaction from a validator client module, the Blues
Chain client smart contract first calculates and checks the hash value of the
valset. If the valset is unchanged, the smart contract proceeds to checking
the validators’ signatures. To save computations and blockchain gas spending
the signatures must be sorted by validator voting power descending. Thus,
the smart contract does not need to process all the supplied signatures, it
can stop checking when accumulated voting power exceeds 2/3 of the total
voting power.

9 New Utility for BLUES Token

With the launch of Blues Chain BLUES becomes a payment medium for the
services of network validators. Every cross-chain transaction requires a small
amount of BLUES to be paid (the validator fee plus the gas fee). Users will
not need to have BLUES beforehand. The fees are taken from input token
amounts and then internally swapped to BLUES. This is why all CCPs must
contain BLUES.

Another important new utility of BLUES is the validator’s staking. The val-
idator’s staked amount defines their voting power and share of the validation
rewards. The staked amount is also used to retain slashes for validator’s
malfunction.

And, finally, we introduce the Blueshift insurance fund as an additional util-
ity for BLUES tokens. The insurance fund accumulates 50% of all cross-chain
validator fees taken from protocol users. These fees, nominated in BLUES
tokens, are locked in lightweight portfolio smart contracts under control of
Blues Chain and are unavailable for swaps and other operations. The pur-
pose of these locked assets is to guarantee repayments of losses should they
occur during the protocol operation. As these circumstances have very low
probability, BLUES tokens will be locked in the insurance fund virtually
forever.

22

10 Summary

In this whitepaper we have presented the Blueshift cross-chain protocol
that can be used to exchange native crypto assets between several blockchains
without creation of wrapped tokens or other intermediate assets. We also
introduced a concept of cross-chain portfolios (CCP) as a generalization of
Blueshift portfolios that have the same swap and liquidity management logic,
but allow for aggregating assets from different blockchains in one logical
portfolio.

The second major part of this whitepaper is the description of Blues Chain
- an application-specific blockchain built on top of the Cosmos SDK and
used as a common settlement layer for all Blueshift’s cross-chain operations.
We have presented the architecture, functional description and transaction
lifecycle of Blues Chain.

In the third part we explained source and destination blockchain connec-
tors as well as validator staking and delegation logic. We described a new
important utility of the BLUES token as a a payment medium for the services
of network validators and a reserve coin of the insurance fund.

References

[1] Axelar network: Connecting applications with blockchain ecosystems.
https://axelar.network/axelar_whitepaper.pdf.

[2] Chainge finance. https://chainge-finance.gitbook.io/
chainge-finance/discover-chainge/about-chainge.

[3] Cosmos sdk documentation. https://docs.cosmos.network/main.

[4] Earlybird protocol. https://docs.earlybird.xyz/earlybird/
readme.

[5] FUSION FOUNDATION. Fusion whitepaper. an inclusive cryptofinance
platform based on blockchain. https://www.fusion.org/themes/
fusion/assets/pdf/Fusion-White-Paper.pdf.

23

Christopher Goes. The interblockchain communication protocol:
An overview. https://github.com/cosmos/ibc/raw/old/papers/
2020-05/build/paper.pdf.

Gravity bridge. https://www.gravitybridge.net/.

Hyperlane. https://docs.hyperlane.xyz/docs/introduction/
readme.
Li.fi documentation. https://docs.1i.fi/.

Multichain - cross-chain router protocol. https://multichain.xyz/.
Osmosis docs. https://docs.osmosis.zone/.
Polymer: The ibc transport hub. https://www.polymerlabs.org/.

Router chain. https://www.routerprotocol.com/
router-chain-whitepaper.pdf.

Stargate. https://stargate.finance/.

Igor Struchkov, Igor Mikhalev, and Alexey Lukashin. Blueshift
protocol. https://blueshift.fi/wp-content/uploads/2023/02/
blueshift-whitepaper.pdf.

Swing.xyz — cross-chain crypto & bridge aggregator. https://swing.
xyz/.

Symbiosis documentation. https://docs.symbiosis.finance/.

Thorchain: A decentralised liquidity network. https:
//github.com/thorchain/Resources/blob/master/Whitepapers/
THORChain-Whitepaper—-May2020.pdf.

Wrapped tokens. a multi-institutional framework for tokenizing any
asset. https://wbtc.network/assets/wrapped-tokens-whitepaper.
pdf.

Ryan Zarick, Bryan Pellegrino, and Caleb Banister. Delta: Solving the
bridging trilemma. https://www.dropbox.com/s/gf3606jedromp61/
Delta-Solving.The.Bridging-Trilemma.pdf.

24

[21] Ryan Zarick, Bryan Pellegrino, and Caleb Banister. Layerzero: Trustless
omnichain interoperability protocol. https://layerzero.network/
pdf/LayerZero_Whitepaper_Release.pdf.

Disclaimer

This paper is for general information purposes only. It does not constitute
investment advice or a recommendation or solicitation to buy or sell any
investment and should not be used in the evaluation of the merits of making
any investment decision. It should not be relied upon for accounting, legal
or tax advice or investment recommendations.

25

